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Scientists prominently argue that the COVID-19 pandemic stems not least from peo-
ple’s inability to understand exponential growth. They increasingly cite evidence from a
classic psychological experiment published some 45 years prior to the first case of
COVID-19. Despite—or precisely because of—becoming such a canonical study (more
often cited than read), its critical design flaws went completely unnoticed. They are dis-
cussed here as a cautionary tale against uncritically enshrining unsound research in the
“lore” of a field of research. In hindsight, this is a unique case study of researchers fall-
ing prey to just the cognitive bias they set out to study—undermining an experiment’s
methodology while, ironically, still supporting its conclusion.

exponential growth j prediction task j experiment j extrapolation j cognitive bias

In 1973, a young but well-published Dutch psychologist named Willem Albert Wagenaar
visited Pennsylvania State University as an adjunct associate professor on a Fulbright
grant. He conducted research together with a student named Sabato D. Sagaria (later an
associate professor of psychology himself), and both of them ended up inspiring an entire
field of research through a pioneering publication, for which Willem turned William, in
1975 (1).
Fast forward 45 years, the world is in a state of emergency, and Wagenaar and Sagaria’s

findings are now more prominent than ever (1). Their study enjoys newfound popularity
and has become a standard reference of sorts—cited wherever researchers lament people’s
inability to understand and extrapolate time series that grow exponentially, which many
say lies at the heart of our current COVID-19 pandemic (e.g., refs. 2–5).
There is just one hitch with Wagenaar and Sagaria’s seminal study: It was wrong all

along. Their inventive experimental setup was plagued by three critical design flaws.
Rather than document erroneous reasoning on the part of their participants, their study
effectively turned the cognitive bias mirror on researchers themselves. With hundreds
of other professors and PhDs citing the study while failing to appreciate and discuss its
flaws, the experiment eventually became self-fulfilling of sorts—turning subsequent
authors into unwitting participants in a metaexperiment that did fully accomplish what
Wagenaar and Sagaria (1) had had in mind: to demonstrate dramatically how difficult
and error fraught exponential extrapolation really is.
In a global pandemic where policies should rest on the best available evidence, this

case should remind us of the diligence and critical scrutiny required in the face of even
the most accepted canonical evidence. Therein lies, after all, a lasting value of Willem
Wagenaar’s Pennsylvania stint—and a lesson to remember in subsequent research (not
just) on COVID-19.

Background: Wagenaar and Sagaria’s Pollution Prediction Task

Imagine being shown the following sequence of numbers: 3, 7, 20, 55, and 148.
Authorities tell you that this is a pollution index, measuring “pollution in the upper air
space” in each of the years 2010 to 2014, respectively. What is your intuitive predic-
tion, they ask you, for the pollution index in 2019? (Feel encouraged to pause for a
moment to come up with your own prediction.)
This was the puzzle that Wagenaar and Sagaria (1) put to Penn State psychology stu-

dents in their now classical experiment—except for the years being 1970 to 1974 rather
than 2010 to 2014. The experiment tested other index progressions as well, but the
authors disclosed no details, which explains why every follow-up study (e.g., 5–9) and
even critics (e.g., 10, 11) have all zeroed in on just this example. How then would you
continue the series after its fifth value, 148?
The researchers had generated their series using the simplest exponential function:

f(t) = et, where f(t) is the pollution index, e is the base of the natural logarithm, and
t is the number of years since 1969. Using this formula on each of the years 1970 to
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1974 returns the values 2.72, 7.39, 20.09, 54.60, and 148.41,
which round to exactly the sequence cited earlier. Extrapolating
to 1979 (the tenth year in the series) yields e10, which the
researchers called the “value prescribed by exponential extrap-
olation” or normative value for short. This was the prediction
target for 1979 that they expected their participants to report.
Looking at their experimental data, however, the authors

were surprised and alarmed to discover that “[n]inety percent
of the subjects estimated below half of the normative value”
(1). Later researchers were likewise alarmed and cited the study
at least 320 times (not counting many books), with seemingly
exponential growth since the onset of COVID-19 (Fig. 1).
Despite some early (and limited) criticism (10, 11), Wage-

naar and Sagaria’s study (1) was commended as “a fundamental
reference” (12) and “a famous experiment” (13)—thus gradu-
ally becoming a canonical citation, even in an anthology on
“the right way of doing psychology” (14). Recently, the study
met with approval not just within some of the most reputable
academic journals (2–4) and a growing number of popular sci-
ence books (5, 15, 16) but also in normative analyses by legal
scholars (12, 17, 18) and even policy documents such as the
World Economic Forum’s COVID-19: The Great Reset (13). It
seems to be almost everywhere these days.

Discussion: Three Critical Flaws in the
Experiment’s Design

As is often the case with canonical literature, Wagenaar and
Sagaria’s study (1) has accrued fame to a point where it proba-
bly gets cited more often than read. Despite its immense (and
still growing) popularity, a closer look at the study’s design
reveals three critical flaws that were never adequately addressed
in any subsequent literature.

Flaw 1: Miscalculation of the Normative Value. As the bench-
mark for their participants’ predictive performance, the authors
stated a prediction target for 1979 (“normative value”) of
25,000 (1). This value appears to have never been questioned
but instead, reiterated on faith by subsequent authors, who
asserted simply that “[t]he correct answer is 25,000” (5, 8). Yet,
this “correct answer” had, in fact, no basis in (correct) mathe-
matics. Computing the 10th power of Euler’s number (e10)
actually yields not 25,000 but merely 22,026. Thus, Wagenaar
and Sagaria’s normative value was inflated by 13.5% right from
the start—conversely lowering the share of their participants
who actually did underestimate any growth process (1).*

Flaw 2: Misspecification of the Growth Process. More criti-
cally, the authors relied on an unstated assumption about the
functional dynamics of air pollution. They expected (but did
not cue) their participants to extrapolate the series exponen-
tially, instead of assuming noisy data from an underlying qua-
dratic or other polynomial growth process. As an earlier critic
noted, “There are an infinity of possible extrapolations, and
choice between them can only be made on the basis of a
hypothesis concerning the process that generated the numbers”
(10). So, unless we assume pollution to beget more pollution, it
should accumulate at the same rate by which polluters on the
ground multiply. This may be exponential but need not be at
all. In fact, pollution and similar phenomena “often do not
demonstrate exponential growth” in practice because of

ecological resilience; countervailing forces “would normally
intervene to prevent unabated exponential growth” (10).

These are not merely theoretical objections. Even at the time
of the experiment, contemporary research noted “the limited
use [… ] by local air pollution control agencies” of exponential
models, and recommended—as a best practice—to extrapolate
air pollution based on a linearized calculation (19). Even
researchers already used linear extrapolation (as when CO2

emissions were “predicted by using a 4%/y and a 3.5%/y
growth rate”, ref. 20), since empirical data at the time suggested
nothing like exponential growth. For any ten-year interval
between 1940 and 1970, emission growth of various pollutants
was reported at between –26 and +44% in total (20).

These estimates—no matter how accurate in hindsight—-
would have shaped contemporary assumptions, including those
of the participants studied by Wagenaar and Sagaria (1). There
was then—and is now—no atmospheric pollutant known to
humanity that (even at a retention rate of 100%) would accu-
mulate more than 7,000-fold in nine years, as a progression
from 3 to 22,026 in the years 1970 to 1979 would have
implied. The experiment’s participants would, therefore, have
been well advised to assume subexponential growth given that
neither theoretical nor empirical reasons suggested otherwise.

One might debate exactly which implicit function would
have guided participants in the experiment; an earlier critic sug-
gested polynomial extrapolation (10). For the present exposi-
tion, it suffices to show that there are indeed alternatives that
do not require any exponential term. For instance, consider the
polynomial f(t) = 0.04 × t5 + 3 × t. For years 1 through 5,
this function would yield pollution indices of 3, 7, 19, 53, and
140—almost identical to the series cited earlier. Yet, extrapolat-
ing further would yield a wildly different prediction for year
10. Under polynomial growth, the process would arrive at
4,030 rather than 22,026.

Therefore, all that the experiment may have demonstrated
are different assumptions about how air pollution accumulates.
Given very few observations and a plausible subexponential
mechanism, people may tend (justifiably) not to assume expo-
nential growth. If, in contrast, the researchers did, then whose
“misperception” did they really document?

Flaw 3: Misperception of Exponential Growth. A third flaw is
both the most intricate and most instructive. If you (dear
reader) did actually pause earlier to extrapolate the series of five
numbers cited in the Background section, how did
you proceed?

Without guidance on the functional form, the most practical
approach would be to compute the rate of change from one
year to the next and to extrapolate on that basis. Consider the

Fig. 1. Citations to Wagenaar and Sagaria (1) each year since 1975 using
Google Scholar data from 4 January 2022.

*Unfortunately, Wagenaar and Sagaria (1) did not document the raw data needed for an
exact reanalysis (as would be best practice nowadays).
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first five powers of Euler’s number cited earlier: 2.72, 7.39,
20.09, 54.60, and 148.41. The rate of change from 2.72 to
7.39 is +172%. The rate of change from 7.39 to 20.09 is
+172%. So is the rate of change for each of the next steps in
the series—which is mathematically trivial because adding 172%
is exactly the same as multiplying by 2.72, the base (e) of our
exponential process. If we continued to extrapolate by adding
172% to the 1974 value (148.41) and each of the subsequent val-
ues until 1979, we would obtain 22,096—off the normative
value e10 = 22,026 by merely 70 units: a rounding error of
0.3%.
Note, however, this rounding error. What would happen if

instead of computing the rate of change from numbers with
two-digit precision, we computed it from rounded whole num-
bers, like those provided by Wagenaar and Sagaria (1)? In their
series of 3, 7, 20, 55, and 148—despite each value being
rounded correctly—we find a rate of change from the first year
to the second of +133%; from the second to the third,
+186%; from the third to the fourth, +175%; and from the
fourth to the fifth, +169%. In other words, attentive partici-
pants observed four different rates of change between 133 and
186%. Since they could hardly be expected to compute an
overall annual growth rate (165%) on the fly, they may have
reasonably used a conservative extrapolation strategy. Using the
initial growth rate (or the lowest of four; i.e., 133%), they
might have determined 1979 pollution to come out at just
148 × 2.335 = 10,163.

Three Flaws—Three Prediction Strategies. Given the three flaws
we observed, we should indeed be surprised if any participant had
estimated 1979 pollution at the supposed “normative value” of
25,000. Instead, accounting for each flaw in turn, we describe
three different prediction strategies, which Fig. 2 illustrates.
To make sense of Fig. 2, first look at its right-most edge. At

the very top sits the normative value of 25,000 expected by
Wagenaar and Sagaria (1). Below it, the range plot (I) indicates
the range within which, according to the experiment’s empirical
findings, roughly a quarter of participants’ predictions fell. Ten
percent of predictions fell above the higher end of the range,
and two-thirds fell below the lower end; the authors were
alarmed that the entire range was far removed from their
expected normative value.
Now consider the three time series (+, x, and o). All start with

almost identical values in the first five years—their markers over-
lap indistinguishably. This means that participants seeing these
five values simply cannot know (absent additional information)
which of three trajectories to follow: the exponential trend imag-
ined by the researchers (o), a plausible polynomial alternative (x),
or an extrapolation of the year by year growthrate under a conser-
vative assumption (+).† Seeing that two of these trends end up,
after ten years, well within the range of at least a third of Wage-
naar and Sagaria’s participants, there may have been much less
reason for alarm than the authors made out (1).

Conclusion: Turning the Cognitive Bias Mirror
on Ourselves

The experiment by Wagenaar and Sagaria (1), albeit cited fre-
quently, contained serious design flaws that undercut their

analysis that “[n]inety percent of the subjects estimated below
half of the normative value.” However, to the same extent that
these flaws undermined the study’s design, its conclusion may,
ironically, have gotten stronger still.

To see this, consider the third and most consequential flaw
in Wagenaar and Sagaria’s design (1). They rounded 2.72 to
3.00 for the initial value of their series of ten. In other words,
the very first value of their exponential progression was off
from the true value by more than one-tenth. Such a difference
of 10.4% in step 1 alone accumulates to a deviation of 168%
in the tenth step of the progression. Had the researchers them-
selves properly appreciated the dynamics of exponential growth,
they should never have rounded so liberally.

Why should this cognitive lapse concern us even fifty years
later? The study’s first author has been dead for ten years, so this
story would hardly be interesting if it was just about an honest
mistake once made, a mere historical curiosity. After all, subse-
quent research by the same (e.g., 21) and other authors (e.g., 22)
did document a tendency to underestimate exponential growth
using more convincing experimental designs. The fact, however,
that even today policy makers and lawyers continue to perceive
the 1975 study as meaningful—or even exclusive—empirical evi-
dence may teach us a broader lesson:

Time and again, flawed studies are cited uncritically, gradu-
ally building up “misinformation in and about science” (23),
which solidifies with each additional citation. Conversely, the
probability that researchers in a given field recheck earlier
methods may decline over time as a paper becomes canonized
in what Robert Abelson (24) once called “the lore of that field.”
So, even with no reason to suspect that Wagenaar and Sagaria
(1) erred in anything but the best of faith, decades of subse-
quent research should not have overlooked (or acquiesced to)
their critical mistakes (notwithstanding rare but equally over-
looked exceptions such as refs. 10, 11).

What their study therefore truly (and impressively) demon-
strates is that even hundreds of professors and PhDs routinely
underestimate the effect of a seemingly minor mathematical
manipulation (such as rounding to the nearest integer) on sub-
sequent exponential growth. This is a striking case study adding
to a growing literature on “bias bias”. Researchers have a
“tendency to spot biases even when there are none” (25) and to
overstate biases because of their own cognitive limitations. For
instance, a provocative study once asked, “Are we overconfident
in the belief that probability forecasters are overconfident?” (26,
27). More recent analyses of another bias suggest that “the hot
hand fallacy itself can be viewed as a fallacy,” committed by its
very proponents themselves (28). In a similar vein, we can con-
clude that Wagenaar and Sagaria (1) devised a study not as
much of their participants as of their academic peers—a fifty-

Fig. 2. Prediction strategies for the pollution index (y-axis; in 1,000) per
year (x-axis).

†Participants were in a position like major league baseball hitters facing top pitchers like Yu
Darvish, whose pitches have been shown—by video overlay—to produce a wide range of
deliveries from indistinguishable initial moves (https://www.youtube.com/watch?v=jUbAA
urrnwU). I thank Carl Bergstrom for this instructive simile.
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year-long metaexperiment on the efficacy of scientific error cor-
rection with unfortunately rather bleak results.
This is why even today, almost five decades later, we

should mind Wagenaar and Sagaria’s prescient conclusion:
“Underestimation appears to be a general effect which is not
reduced by daily experience with growing processes” (1). This

is at once a timeless finding and an apt reminder to anyone in
statistical practice—as well as a note of caution to policy mak-
ers relying on time-honored research to contain the exponential
spread of a global pandemic.

Data Availability. All study data are included in the article.
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